Package: learner 0.2.0

learner: Latent Space-Based Transfer Learning

Implements transfer learning methods for low-rank matrix estimation. These methods leverage similarity in the latent row and column spaces between the source and target populations to improve estimation in the target population. The methods include the LatEnt spAce-based tRaNsfer lEaRning (LEARNER) method and the direct projection LEARNER (D-LEARNER) method described by McGrath et al. (2024) <doi:10.48550/arXiv.2412.20605>.

Authors:Sean McGrath [aut, cre], Cenhao Zhu [aut], Rui Duan [aut]

learner_0.2.0.tar.gz
learner_0.2.0.zip(r-4.5)learner_0.2.0.zip(r-4.4)learner_0.2.0.zip(r-4.3)
learner_0.2.0.tgz(r-4.5-any)learner_0.2.0.tgz(r-4.4-any)learner_0.2.0.tgz(r-4.3-any)
learner_0.2.0.tar.gz(r-4.5-noble)learner_0.2.0.tar.gz(r-4.4-noble)
learner_0.2.0.tgz(r-4.4-emscripten)learner_0.2.0.tgz(r-4.3-emscripten)
learner.pdf |learner.html
learner/json (API)
NEWS

# Install 'learner' in R:
install.packages('learner', repos = c('https://stmcg.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/stmcg/learner/issues

Datasets:
  • dat_highsim - Simulated data set: High similarity in the latent spaces
  • dat_modsim - Simulated data set: Moderate similarity in the latent spaces

On CRAN:

3.18 score 1 stars 3 scripts 251 downloads 3 exports 5 dependencies

Last updated 1 months agofrom:fb6e19f918. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 11 2025
R-4.5-winOKFeb 11 2025
R-4.5-macOKFeb 11 2025
R-4.5-linuxOKFeb 11 2025
R-4.4-winOKFeb 11 2025
R-4.4-macOKFeb 11 2025
R-4.3-winOKFeb 11 2025
R-4.3-macOKFeb 11 2025

Exports:cv.learnerdlearnerlearner

Dependencies:codetoolsdoParallelforeachiteratorsScreeNOT