Package: learner 0.2.0

learner: Latent Space-Based Transfer Learning

Implements transfer learning methods for low-rank matrix estimation. These methods leverage similarity in the latent row and column spaces between the source and target populations to improve estimation in the target population. The methods include the LatEnt spAce-based tRaNsfer lEaRning (LEARNER) method and the direct projection LEARNER (D-LEARNER) method described by McGrath et al. (2024) <doi:10.48550/arXiv.2412.20605>.

Authors:Sean McGrath [aut, cre], Cenhao Zhu [aut], Rui Duan [aut]

learner_0.2.0.tar.gz
learner_0.2.0.zip(r-4.5)learner_0.2.0.zip(r-4.4)learner_0.2.0.zip(r-4.3)
learner_0.2.0.tgz(r-4.4-any)learner_0.2.0.tgz(r-4.3-any)
learner_0.2.0.tar.gz(r-4.5-noble)learner_0.2.0.tar.gz(r-4.4-noble)
learner_0.2.0.tgz(r-4.4-emscripten)learner_0.2.0.tgz(r-4.3-emscripten)
learner.pdf |learner.html
learner/json (API)
NEWS

# Install 'learner' in R:
install.packages('learner', repos = c('https://stmcg.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/stmcg/learner/issues

Datasets:
  • dat_highsim - Simulated data set: High similarity in the latent spaces
  • dat_modsim - Simulated data set: Moderate similarity in the latent spaces

On CRAN:

3.18 score 1 stars 3 scripts 58 downloads 3 exports 5 dependencies

Last updated 1 days agofrom:fb6e19f918. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 12 2025
R-4.5-winOKJan 12 2025
R-4.5-linuxOKJan 12 2025
R-4.4-winOKJan 12 2025
R-4.4-macOKJan 12 2025
R-4.3-winOKJan 12 2025
R-4.3-macOKJan 12 2025

Exports:cv.learnerdlearnerlearner

Dependencies:codetoolsdoParallelforeachiteratorsScreeNOT